首页> 外文OA文献 >Validation of a step detection algorithm during straight walking and turning in Patients with Parkinson's disease and older adults using an inertial measurement unit at the lower back
【2h】

Validation of a step detection algorithm during straight walking and turning in Patients with Parkinson's disease and older adults using an inertial measurement unit at the lower back

机译:使用下背部的惯性测量装置验证帕金森氏病患者和老年人在直行和转弯过程中的步检测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Introduction: Inertial measurement units (IMUs) positioned on various body locations allow detailed gait analysis even under unconstrained conditions. From a medical perspective, the assessment of vulnerable populations is of particular relevance, especially in the daily-life environment. Gait analysis algorithms need thorough validation, as many chronic diseases show specific and even unique gait patterns. The aim of this study was therefore to validate an acceleration-based step detection algorithm for patients with Parkinson's disease (PD) and older adults in both a lab-based and home-like environment. Methods: In this prospective observational study, data were captured from a single 6-degrees of freedom IMU (APDM) (3DOF accelerometer and 3DOF gyroscope) worn on the lower back. Detection of heel strike (HS) and toe off (TO) on a treadmill was validated against an optoelectronic system (Vicon) (11 PD patients and 12 older adults). A second independent validation study in the home-like environment was performed against video observation (20 PD patients and 12 older adults) and included step counting during turning and non-turning, defined with a previously published algorithm. Results: A continuous wavelet transform (cwt)-based algorithm was developed for step detection with very high agreement with the optoelectronic system. HS detection in PD patients/older adults, respectively, reached 99/99% accuracy. Similar results were obtained for TO (99/100%). In HS detection, Bland-Altman plots showed a mean difference of 0.002 s [95% confidence interval (CI) -0.09 to 0.10] between the algorithm and the optoelectronic system. The Bland-Altman plot for TO detection showed mean differences of 0.00 s (95% CI -0.12 to 0.12). In the home-like assessment, the algorithm for detection of occurrence of steps during turning reached 90% (PD patients)/90% (older adults) sensitivity, 83/88% specificity, and 88/89% accuracy. The detection of steps during non-turning phases reached 91/91% sensitivity, 90/90% specificity, and 91/91% accuracy. Conclusion: This cwt-based algorithm for step detection measured at the lower back is in high agreement with the optoelectronic system in both PD patients and older adults. This approach and algorithm thus could provide a valuable tool for future research on home-based gait analysis in these vulnerable cohorts.
机译:简介:位于身体各个位置的惯性测量单元(IMU)甚至可以在不受约束的条件下进行详细的步态分析。从医学的角度来看,对脆弱人群的评估特别重要,特别是在日常生活环境中。步态分析算法需要彻底的验证,因为许多慢性疾病显示出特定甚至独特的步态模式。因此,本研究的目的是在实验室和家庭环境中验证帕金森氏病(PD)和老年人的基于加速度的步检测算法。方法:在这项前瞻性观察研究中,数据是从佩戴在下背部的单个6自由度IMU(APDM)(3DOF加速度计和3DOF陀螺仪)中捕获的。已针对光电系统(Vicon)(11名PD患者和12名老年人)验证了在跑步机上检测到的脚跟撞击(HS)和脚趾脱(TO)。在类似家庭的环境中,第二项独立验证研究是针对视频观察(20名PD患者和12名老年人)进行的,其中包括在转弯和不转弯期间的步数计数,这是以前发布的算法所定义的。结果:开发了一种基于连续小波变换(cwt)的算法,用于与光电系统高度吻合的步检测。 PD患者/老年人的HS检测准确率分别达到99/99%。 TO的结果相似(99/100%)。在HS检测中,Bland-Altman图显示算法与光电系统之间的平均差为0.002 s [95%置信区间(CI)-0.09至0.10]。用于TO检测的Bland-Altman图显示平均差为0.00 s(95%CI -0.12至0.12)。在类似家庭的评估中,用于检测转弯过程中台阶发生率的算法达到了90%(PD患者)/ 90%(成年人)的敏感性,83/88%的特异性和88/89%的准确性。在非转向阶段中对台阶的检测达到了91/91%的灵敏度,90/90%的特异性和91/91%的精度。结论:这种基于cwt的后背台阶测量算法在PD患者和老年人中与光电系统高度吻合。因此,这种方法和算法可以为将来在这些弱势人群中进行基于家庭的步态分析的研究提供有价值的工具。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号